Complex Analysis (for Physics) "ulr universitv of
Final Exam (with solutions) i / groninger{
Exam Date: January 26, 2023 (11:45-13:45)

1) Consider the complex function
F(2) =2+ (22 + 7)) + 1|2

a) Determine the point(s) at which F'(z) is differentiable.
b) Compute the derivative F’(z) at the point(s) where it exists.

Solution. a) We start by identifying the real and imaginary parts of the function, i.e.
u(z,y) = Re F(z) = Re{z + (z* + 2°) + il 2|’} = v + 2(«® — ?)
and
v(z,y) =Im F(z) = Tm{z + (2 + 2°) +il2]*} =y + (2" + ¢?)

This shows that the function is defined everywhere with continuously differentiable real and imaginary parts,
therefore F'(z) is differentiable exactly at the points zy = zg+iyy € C where the Cauchy-Riemann equations
are satisfied (cf. Theorem 5 of Section 2.4).  The Cauchy-Riemann equations read

ou ov

or 8_y 1+4x = 142y
<~

@ — _@ -4y = -2z

dy ox

The first equation implies that ¥y = 22 whereas the second equation implies that 4y = 2x. Taking the
difference of these two equations yields 3y = 0, i.e. y = 0 and then = = 0 as well. This means that the
origin zp = 0 4+ 40 = 0 is the only point at which the Cauchy-Riemann equations are satisfied hence the
only point where the derivative of F'(z) exists.

b) Given that the derivative exists at zy, we have

, ou Ou
F'(z) = ax($0,y0)+ 8y(9€0,yo)

Based on part a), we see that

F'(0) = [(1+42) +i(—4y)] | m)=00= 1

2) Consider the complex function

3
9(z) = G—2)(z+1)

a) Find its Taylor series and the circle of convergence around 0.

b) Find its Laurent series expansion in the domain |z| > 2.
c) Determine its singularities (with type and order specified).

Solution. a) Using partial fraction decomposition we find that

1 N -1
z—2 z+1

which is suitable for applying the geometric series formula. Namely, the first term can be written as

1 1 ] — 2
_ ! 2 'fH 1. ie. 9
s—2 21 22() 5] <1 el <
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and the second term can be expressed as

[e.e]

— _Z(_Z)" if |—z| <1, ie |z <1.

n=0

-1 1
z+1 11— (=2)

Therefore for points inside the unit circle |z| < 1 we have the following Taylor series expansion of g(z)

around O:
0 =—33 () == (- ) =

n=0 n=0 n=0
b) The choice of domain |z| > 2 suggests a different way of expressing the terms in the partial fraction
decomposition seen in part a). Namely, we have

1 1 1 1 = /2\" 2
=2 zl1- z%(z) I 'z

z

<1, ie |z| >2

o

and

<1, ie |z| > L

1 1 1 1 — 1\" . 1
Z—H:‘;@*;Z(—;) 'f\—;

Thus the Laurent series of g(z) in the domain |z| > 2 reads

9(=) = lf? (g) - li (—1) =3l (A = Y (e,

n=0 n=0 n=0 n=1

Note that the coefficient of < (i.e. n = 0 term) is zero.

c) Being a rational function, the singularities of g(z) in C are poles located at the zeros of the denom-
inator (with matching orders).  Therefore the singularities of g(z) are simple poles located at z = 2 and
z=—1.

3) Compute the following complex integral

93(2@',2 —37)dz

r

where T is the positively oriented contour consisting of the interval [—1,1] and the upper semicircle of
radius 1 centered at 0.

Solution. The contour is the union of a line segment C and a semicircle C5 which can be parameterized
by the functions z;(t) = ¢, —1 <t < 1 and 2(t) = €%, 0 < t < m, respectively.  Note that we have
21 (t) =1 and z,(t) = ie®.  Using the additivity of complex integrals we get

$(2iz - 32)de = [ (2i2 - 32)dz + [ (202 — 37) d»
I C1 Co

1 ™
= f(%t —3t)dt + I(%eit — 3e~)ie! dt
-1 0

= [it* — 2671, + [ie*™ — 3dt]j

= —3m.

4) Evaluate the following improper integral
I x* cos(2x) s
J x4+ 622 +9

Page 2 of 4



Solution. Since the integrand is an even function, we have

2 2

¢ 2% cos(2x) 1 x* cos(2x)
I 4 2 dr = I 4 2
Ox+6x +9 2 r* + 624+ 9
Let us consider the complex function
2 ,2iz 2

zoe i z
A 462249 (22 +3)2

2iz

f(z) =

By Euler's formula, it is clear that we have

22 cos(2x)
R el S
e/(z) = 462249
The function f(z) has two double poles at z; = iv/3 and 2, = —iv/3.  Let I'r denote the positively

oriented closed contour consisting of the interval [— R, R] along the real axis and the upper semicircle C'(0)
of radius R centered at 0. If R > /3, then z; is inside 'z whereas z5 is not enclosed by I'g for any
R > 0. Therefore, by the Residue Theorem, we have

gﬁf(z) dz = 2miRes(f, z), if R> V3.

Since z; is a pole of order 2, the residue is found via

zZ—z1 zZ—z1

Res(f, 21) = lim (2 — 2)2f(2))' = lim ((267)2) _6-VB s

Thus

We also have

gSf(z) dz = ff(x) de+ | f(2)dz
Tr —-R CE(0)

and thus

e (g1} e | 100

—00

The last term vanishes due to Jordan’s lemma as we have deg(z* + 622 +9) > 1 + deg(2?) and we are

left with .
_L f(x)dr = (% — 1) me 23,

Thus we have computed the improper integral in question and found that

2

v 2 1 o0 1
[ cos(2r) g, 1 Re [~ fla)dw = <— - 1) e
0T + 62+ 9 2 —00 23 2
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5) Suppose that f(z) is analytic on the closed disc |z] < 1 and satisfies |f(z)| < 1 along the boundary
circle |z| = 1. Show that f(z) has exactly one fixed point inside the disc, i.e. the equation f(z) = z has
exactly one solution (counting multiplicity) in |z| < 1.

Solution. For the entire function h(z) = —z we have |f(z)| < 1 = |z] = | — z| = |h(2)| along the unit
circle |z| = 1. Therefore, by Rouché’'s Theorem, f(z) + h(z) = f(z) — z and h(z) = —z have the same
number of zeros inside the unit disc.  The function h(z) = —z clearly has exactly one zero (of multiplicity

1 at 2 =0), therefore f(z)— z also has exactly one zero satisfying |z| < 1, i.e. f(z) —z = 0 has exactly
one solution in |z| < 1. This concludes the proof.

Page 4 of 4



