
Complex Analysis (for Physics)

Final Exam (with solutions)
Exam Date: January 26, 2023 (11:45 – 13:45)

1) Consider the complex function
F (z) = z + (z2 + z2) + i|z|2

a) Determine the point(s) at which F (z) is differentiable.
b) Compute the derivative F ′(z) at the point(s) where it exists.

Solution. a) We start by identifying the real and imaginary parts of the function, i.e.

u(x, y) = ReF (z) = Re{z + (z2 + z2) + i|z|2} = x+ 2(x2 − y2)

and
v(x, y) = ImF (z) = Im{z + (z2 + z2) + i|z|2} = y + (x2 + y2)

This shows that the function is defined everywhere with continuously differentiable real and imaginary parts,
therefore F (z) is differentiable exactly at the points z0 = x0+iy0 ∈ C where the Cauchy-Riemann equations
are satisfied (cf. Theorem 5 of Section 2.4). The Cauchy-Riemann equations read
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The first equation implies that y = 2x whereas the second equation implies that 4y = 2x. Taking the
difference of these two equations yields 3y = 0, i.e. y = 0 and then x = 0 as well. This means that the
origin z0 = 0 + i0 = 0 is the only point at which the Cauchy-Riemann equations are satisfied hence the
only point where the derivative of F (z) exists.

b) Given that the derivative exists at z0, we have

F ′(z0) =
∂u

∂x
(x0, y0) + i

∂u

∂y
(x0, y0).

Based on part a), we see that

F ′(0) = [(1 + 4x) + i(−4y)] |(x,y)=(0,0)= 1

2) Consider the complex function

g(z) =
3

(z − 2)(z + 1)

a) Find its Taylor series and the circle of convergence around 0.
b) Find its Laurent series expansion in the domain |z| > 2.
c) Determine its singularities (with type and order specified).

Solution. a) Using partial fraction decomposition we find that

g(z) =
1

z − 2
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−1

z + 1

which is suitable for applying the geometric series formula. Namely, the first term can be written as
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and the second term can be expressed as
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Therefore for points inside the unit circle |z| < 1 we have the following Taylor series expansion of g(z)
around 0:
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b) The choice of domain |z| > 2 suggests a different way of expressing the terms in the partial fraction
decomposition seen in part a). Namely, we have
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Thus the Laurent series of g(z) in the domain |z| > 2 reads
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Note that the coefficient of 1
z
(i.e. n = 0 term) is zero.

c) Being a rational function, the singularities of g(z) in C are poles located at the zeros of the denom-
inator (with matching orders). Therefore the singularities of g(z) are simple poles located at z = 2 and
z = −1.

3) Compute the following complex integral
z

Γ

(2iz − 3z) dz

where Γ is the positively oriented contour consisting of the interval [−1, 1] and the upper semicircle of
radius 1 centered at 0.

Solution. The contour is the union of a line segment C1 and a semicircle C2 which can be parameterized
by the functions z1(t) = t, −1 ≤ t ≤ 1 and z2(t) = eit, 0 ≤ t ≤ π, respectively. Note that we have
z′1(t) = 1 and z′2(t) = ieit. Using the additivity of complex integrals we get
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=
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= [it2 − 3
2
t2]1−1 + [ie2it − 3it]π0

= −3πi.

4) Evaluate the following improper integral

∞
w

0

x2 cos(2x)

x4 + 6x2 + 9
dx
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Solution. Since the integrand is an even function, we have

∞
w

0

x2 cos(2x)

x4 + 6x2 + 9
dx =
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∞
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dx.

Let us consider the complex function

f(z) =
z2e2iz

z4 + 6z2 + 9
=

z2

(z2 + 3)2
e2iz.

By Euler’s formula, it is clear that we have

Re f(z) =
x2 cos(2x)

x4 + 6x2 + 9
.

The function f(z) has two double poles at z1 = i
√
3 and z2 = −i

√
3. Let ΓR denote the positively

oriented closed contour consisting of the interval [−R,R] along the real axis and the upper semicircle C+
R (0)

of radius R centered at 0. If R >
√
3, then z1 is inside ΓR whereas z2 is not enclosed by ΓR for any

R > 0. Therefore, by the Residue Theorem, we have

z

ΓR

f(z) dz = 2πiRes(f, z1), if R >
√
3.

Since z1 is a pole of order 2, the residue is found via
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Thus
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We also have
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f(z) dz.

By combining the two expressions for the contour integral we obtain
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The last term vanishes due to Jordan’s lemma as we have deg(z4 + 6z2 + 9) ≥ 1 + deg(z2) and we are
left with
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Thus we have computed the improper integral in question and found that
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5) Suppose that f(z) is analytic on the closed disc |z| ≤ 1 and satisfies |f(z)| < 1 along the boundary
circle |z| = 1. Show that f(z) has exactly one fixed point inside the disc, i.e. the equation f(z) = z has
exactly one solution (counting multiplicity) in |z| < 1.

Solution. For the entire function h(z) = −z we have |f(z)| < 1 = |z| = | − z| = |h(z)| along the unit
circle |z| = 1. Therefore, by Rouché’s Theorem, f(z) + h(z) = f(z)− z and h(z) = −z have the same
number of zeros inside the unit disc. The function h(z) = −z clearly has exactly one zero (of multiplicity
1 at z = 0), therefore f(z)− z also has exactly one zero satisfying |z| < 1, i.e. f(z)− z = 0 has exactly
one solution in |z| < 1. This concludes the proof.
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