university of groningen

1) Consider the complex function

$$
F(z)=z+\left(z^{2}+\bar{z}^{2}\right)+i|z|^{2}
$$

a) Determine the point(s) at which $F(z)$ is differentiable.
b) Compute the derivative $F^{\prime}(z)$ at the point(s) where it exists.

Solution. a) We start by identifying the real and imaginary parts of the function, i.e.

$$
u(x, y)=\operatorname{Re} F(z)=\operatorname{Re}\left\{z+\left(z^{2}+\bar{z}^{2}\right)+i|z|^{2}\right\}=x+2\left(x^{2}-y^{2}\right)
$$

and

$$
v(x, y)=\operatorname{Im} F(z)=\operatorname{Im}\left\{z+\left(z^{2}+\bar{z}^{2}\right)+i|z|^{2}\right\}=y+\left(x^{2}+y^{2}\right)
$$

This shows that the function is defined everywhere with continuously differentiable real and imaginary parts, therefore $F(z)$ is differentiable exactly at the points $z_{0}=x_{0}+i y_{0} \in \mathbb{C}$ where the Cauchy-Riemann equations are satisfied (cf. Theorem 5 of Section 2.4). The Cauchy-Riemann equations read

$$
\left.\begin{array}{rl}
\frac{\partial u}{\partial x} & =\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y} & =-\frac{\partial v}{\partial x}
\end{array}\right\} \Longleftrightarrow\left\{\begin{aligned}
1+4 x & =1+2 y \\
-4 y & =-2 x
\end{aligned}\right.
$$

The first equation implies that $y=2 x$ whereas the second equation implies that $4 y=2 x$. Taking the difference of these two equations yields $3 y=0$, i.e. $y=0$ and then $x=0$ as well. This means that the origin $z_{0}=0+i 0=0$ is the only point at which the Cauchy-Riemann equations are satisfied hence the only point where the derivative of $F(z)$ exists.
b) Given that the derivative exists at z_{0}, we have

$$
F^{\prime}\left(z_{0}\right)=\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)+i \frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right) .
$$

Based on part a), we see that

$$
F^{\prime}(0)=\left.[(1+4 x)+i(-4 y)]\right|_{(x, y)=(0,0)}=1
$$

2) Consider the complex function

$$
g(z)=\frac{3}{(z-2)(z+1)}
$$

a) Find its Taylor series and the circle of convergence around 0 .
b) Find its Laurent series expansion in the domain $|z|>2$.
c) Determine its singularities (with type and order specified).

Solution. a) Using partial fraction decomposition we find that

$$
g(z)=\frac{1}{z-2}+\frac{-1}{z+1}
$$

which is suitable for applying the geometric series formula. Namely, the first term can be written as

$$
\frac{1}{z-2}=-\frac{1}{2} \frac{1}{1-\frac{z}{2}}=-\frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{z}{2}\right)^{n} \quad \text { if }\left|\frac{z}{2}\right|<1 \text {, i.e. }|z|<2
$$

and the second term can be expressed as

$$
\frac{-1}{z+1}=-\frac{1}{1-(-z)}=-\sum_{n=0}^{\infty}(-z)^{n} \quad \text { if }|-z|<1, \text { i.e. }|z|<1
$$

Therefore for points inside the unit circle $|z|<1$ we have the following Taylor series expansion of $g(z)$ around 0 :

$$
g(z)=-\frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{z}{2}\right)^{n}-\sum_{n=0}^{\infty}(-z)^{n}=\sum_{n=0}^{\infty}\left((-1)^{n+1}-\frac{1}{2^{n+1}}\right) z^{n} .
$$

b) The choice of domain $|z|>2$ suggests a different way of expressing the terms in the partial fraction decomposition seen in part a). Namely, we have

$$
\frac{1}{z-2}=\frac{1}{z} \frac{1}{1-\frac{2}{z}}=\frac{1}{z} \sum_{n=0}^{\infty}\left(\frac{2}{z}\right)^{n} \quad \text { if }\left|\frac{2}{z}\right|<1 \text {, i.e. }|z|>2
$$

and

$$
\frac{-1}{z+1}=-\frac{1}{z} \frac{1}{1-\left(-\frac{1}{z}\right)}=-\frac{1}{z} \sum_{n=0}^{\infty}\left(-\frac{1}{z}\right)^{n} \quad \text { if }\left|-\frac{1}{z}\right|<1, \text { i.e. }|z|>1 .
$$

Thus the Laurent series of $g(z)$ in the domain $|z|>2$ reads

$$
g(z)=\frac{1}{z} \sum_{n=0}^{\infty}\left(\frac{2}{z}\right)^{n}-\frac{1}{z} \sum_{n=0}^{\infty}\left(-\frac{1}{z}\right)^{n}=\sum_{n=0}^{\infty}\left[2^{n}-(-1)^{n}\right] z^{-(n+1)}=\sum_{n=1}^{\infty}\left[2^{n}-(-1)^{n}\right] z^{-(n+1)} .
$$

Note that the coefficient of $\frac{1}{z}$ (i.e. $n=0$ term) is zero.
c) Being a rational function, the singularities of $g(z)$ in \mathbb{C} are poles located at the zeros of the denominator (with matching orders). Therefore the singularities of $g(z)$ are simple poles located at $z=2$ and $z=-1$.
3) Compute the following complex integral

$$
\oint_{\Gamma}(2 i z-3 \bar{z}) d z
$$

where Γ is the positively oriented contour consisting of the interval $[-1,1]$ and the upper semicircle of radius 1 centered at 0 .
Solution. The contour is the union of a line segment C_{1} and a semicircle C_{2} which can be parameterized by the functions $z_{1}(t)=t,-1 \leq t \leq 1$ and $z_{2}(t)=e^{i t}, 0 \leq t \leq \pi$, respectively. Note that we have $z_{1}^{\prime}(t)=1$ and $z_{2}^{\prime}(t)=i e^{i t}$. Using the additivity of complex integrals we get

$$
\begin{aligned}
\oint_{\Gamma}(2 i z-3 \bar{z}) d z & =\int_{C_{1}}(2 i z-3 \bar{z}) d z+\int_{C_{2}}(2 i z-3 \bar{z}) d z \\
& =\int_{-1}^{1}(2 i t-3 t) d t+\int_{0}^{\pi}\left(2 i e^{i t}-3 e^{-i t}\right) i e^{i t} d t \\
& =\left[i t^{2}-\frac{3}{2} t^{2}\right]_{-1}^{1}+\left[i e^{2 i t}-3 i t\right]_{0}^{\pi} \\
& =-3 \pi i .
\end{aligned}
$$

4) Evaluate the following improper integral

$$
\int_{0}^{\infty} \frac{x^{2} \cos (2 x)}{x^{4}+6 x^{2}+9} d x
$$

Solution. Since the integrand is an even function, we have

$$
\int_{0}^{\infty} \frac{x^{2} \cos (2 x)}{x^{4}+6 x^{2}+9} d x=\frac{1}{2} \int_{-\infty}^{\infty} \frac{x^{2} \cos (2 x)}{x^{4}+6 x^{2}+9} d x
$$

Let us consider the complex function

$$
f(z)=\frac{z^{2} e^{2 i z}}{z^{4}+6 z^{2}+9}=\frac{z^{2}}{\left(z^{2}+3\right)^{2}} e^{2 i z} .
$$

By Euler's formula, it is clear that we have

$$
\operatorname{Re} f(z)=\frac{x^{2} \cos (2 x)}{x^{4}+6 x^{2}+9} .
$$

The function $f(z)$ has two double poles at $z_{1}=i \sqrt{3}$ and $z_{2}=-i \sqrt{3}$. Let Γ_{R} denote the positively oriented closed contour consisting of the interval $[-R, R]$ along the real axis and the upper semicircle $C_{R}^{+}(0)$ of radius R centered at 0 . If $R>\sqrt{3}$, then z_{1} is inside Γ_{R} whereas z_{2} is not enclosed by Γ_{R} for any $R>0$. Therefore, by the Residue Theorem, we have

$$
\oint_{\Gamma_{R}} f(z) d z=2 \pi i \operatorname{Res}\left(f, z_{1}\right), \quad \text { if } R>\sqrt{3} .
$$

Since z_{1} is a pole of order 2 , the residue is found via

$$
\operatorname{Res}\left(f, z_{1}\right)=\lim _{z \rightarrow z_{1}}\left(\left(z-z_{1}\right)^{2} f(z)\right)^{\prime}=\lim _{z \rightarrow z_{1}}\left(\frac{z^{2} e^{2 i z}}{(z+i \sqrt{3})^{2}}\right)^{\prime}=\frac{6-\sqrt{3}}{12} e^{-2 \sqrt{3}} i .
$$

Thus

$$
\oint_{\Gamma_{R}} f(z) d z=2 \pi i \operatorname{Res}\left(f, z_{1}\right)=\left(\frac{1}{2 \sqrt{3}}-1\right) \pi e^{-2 \sqrt{3}}
$$

We also have

$$
\oint_{\Gamma_{R}} f(z) d z=\int_{-R}^{R} f(x) d x+\int_{C_{R}^{+}(0)} f(z) d z .
$$

By combining the two expressions for the contour integral we obtain

$$
\int_{-R}^{R} f(x) d x=\left(\frac{1}{2 \sqrt{3}}-1\right) \pi e^{-2 \sqrt{3}}-\int_{C_{R}^{+}(0)} f(z) d z
$$

and thus

$$
\int_{-\infty}^{\infty} f(x) d x=\left(\frac{1}{2 \sqrt{3}}-1\right) \pi e^{-2 \sqrt{3}}-\lim _{R \rightarrow \infty} \int_{C_{R}^{+}(0)} f(z) d z
$$

The last term vanishes due to Jordan's lemma as we have $\operatorname{deg}\left(z^{4}+6 z^{2}+9\right) \geq 1+\operatorname{deg}\left(z^{2}\right)$ and we are left with

$$
\int_{-\infty}^{\infty} f(x) d x=\left(\frac{1}{2 \sqrt{3}}-1\right) \pi e^{-2 \sqrt{3}}
$$

Thus we have computed the improper integral in question and found that

$$
\int_{0}^{\infty} \frac{x^{2} \cos (2 x)}{x^{4}+6 x^{2}+9} d x=\frac{1}{2} \operatorname{Re} \int_{-\infty}^{\infty} f(x) d x=\left(\frac{1}{2 \sqrt{3}}-1\right) \frac{\pi}{2} e^{-2 \sqrt{3}}
$$

5) Suppose that $f(z)$ is analytic on the closed disc $|z| \leq 1$ and satisfies $|f(z)|<1$ along the boundary circle $|z|=1$. Show that $f(z)$ has exactly one fixed point inside the disc, i.e. the equation $f(z)=z$ has exactly one solution (counting multiplicity) in $|z|<1$.
Solution. For the entire function $h(z)=-z$ we have $|f(z)|<1=|z|=|-z|=|h(z)|$ along the unit circle $|z|=1$. Therefore, by Rouché's Theorem, $f(z)+h(z)=f(z)-z$ and $h(z)=-z$ have the same number of zeros inside the unit disc. The function $h(z)=-z$ clearly has exactly one zero (of multiplicity 1 at $z=0$), therefore $f(z)-z$ also has exactly one zero satisfying $|z|<1$, i.e. $f(z)-z=0$ has exactly one solution in $|z|<1$. This concludes the proof.
